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A model has been built for estimating the degree 

of uncertainty in making technical decisions. It is 

based on a comparison of the results of decisions 

made (training sample) with their assessment 

based on indicators adopted for the intended deci-

sion making. 

 Построена модель оценивания степени не-

определенности при принятии технических 

решений. Она основана на сравнении данных 

обучающей выборки с их оценкой по предла-

гаемым в модели показателям. 
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Introduction. Nowadays in engineering practice, it is increasingly necessary to make decisions in 

uncertain environment, when the consequences of decisions are associated with a particular risk. The 

risks in this case include the possibility of accidents, catastrophes and other events defined by the concept 

of "operational safety". It is obvious that in making certain technical decisions in uncertain environment, 

the risk cannot be fully excepted. Informed risk-taking and its minimization should be taken into account 

in modern conditions, avoiding its complete disregard. Moreover, it may sometimes be beneficial not to 

minimize the risk but to allow some level of risk, especially in uncertain environment, in order to increase 

the overall usefulness of the decision. This is due to the fact that risk-free decision-making, for example, 

from an extremely pessimistic position with maximum caution, is usually unprofitable. In the scientific 

approach, the decision must be taken from the position of assessing the quantity of risk, which has a given 

boundary when achieving the result with the necessary certainty. The solutions described below are aimed 

at ensuring the effectiveness of technical decision-making in uncertain environment with a calculated 

risk. 

The concept of risk and uncertainty. The technical decision taken in situations involving risk, in 

addition to the desired positive result, necessarily leads to any losses (financial, material, temporary, etc.). 

The cost depends on external conditions (effects), and this dependence is not probabilistic, but possible, 

especially with single decisions. In the field of engineering practice, the concept of risk has the meaning 

of "responsibility for the decision" [1]. And this responsibility is connected, first of all, with the life and 

health of people. In all cases, in accordance with the requirements of modern science, the concept of risk 

should make it possible to quantify it. In the future, the risk will be understood as the value that character-
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izes the possibility of obtaining an undesirable result in the considered situation of decision-making. In 

particular, in [1] it is proposed to determine the amount of risk as a product of the value of the undesirable 

result (or an event uniquely associated with this result) by the possible extent to achieve it (or the possible 

extent of the occurrence of the corresponding event). Therefore, to quantify the risk, let us first assume 

that each considered variant of the Ai decision from a finite set of variants A1, A2, …, Ai, …, Am  is unique-

ly associated with some undesirable result depending on the external conditions (effects) of Fj. In general, 

in uncertain environment, the set of external conditions F is described by fuzzy set theory and is also fi-

nite, although it is principally possible to consider an infinite fuzzy set of external conditions F1, F2, …, 

Fj. Next, we will consider the situation of decision-making, when considering obviously unacceptable op-

tions we will need to make a choice. We believe that the results contained in the set A will meet the con-

ditions with a positive outcome. In this case, the problem of decision-making is to reduce the probability 

of large losses when choosing an alternative from the set A of the following form [2]: 

Ai = (ei1, pi1; ...; eij, pij; ...), i = 1, 2, ..., m, 

where eij is the loss that occurs when the j-th external conditions, j = 1, 2, ..., n; pij — the possibil-

ity of realization of the j-th external conditions when making the i-th desicion. 

As shown in [2], the goal (reducing the possibility of large losses) can be achieved if the risk as-

sessment of the i-th decision as a measure of the possibility of realization of certain losses e use a special 

replacement function Pi(e), reflecting (as accurately as possible) the possibility of large losses [3-5]. 

Construction of compensatory functions in uncertain environment 

A compensatory function must meet the following requirements [2]. 

First, the function Pi(e) must belong to such a family of functions defined on the e axis f(e, h) with 

the parameter h, at which one of the following conditions must be satisfied for all e from the interested to 

us area: 

if ha  hb, then f(e, ha)  f(e, hb); 

if ha  hb, then f(e, ha)  f(e, hb). 

Second, the values of the compensatory function Pi(e) and function f(e, h) should lie in the follow-

ing interval 

0  f(e, hb)  1. 

The first two requirements are obvious. When formulating the third requirement, we note that the 

compensatory function should reflect the possibility of large losses with increasing uncertainty in deci-

sion-making. Therefore, it is advisable to formulate the third requirement in the following form: 

Pi (e) = f (e, hi), 

where hi is the value of the parameter h at which the difference between the functions f (e, h) and 

Pi (e)  is minimal for all the values of h in the Hi area where the condition is satisfied: 

f (e, h)  Pi(e). 

This means that the function f (e, h) provides the highest accuracy of the upper limits of the possi-

bility of large losses with increasing uncertainty. To satisfy the last requirement, a special function was 

introduced in [2]: 

q (p, B) = (1 – B×lnp)
-1/B

) 

The value p here is the value of the compensatory function Pi(e), i.e. in this case p = Pi(e). B pa-

rameter determines the degree of uncertainty in the considered decision-making situation. 

According to the condition (2), the value of p lies in the range 0  p  1, therefore, the function 

q(p, B) is always non-negative and its values also lie in the interval [0,1]. It follows that for all the losses 

e from the range of values E, 

if Pi(e) = Pj(e), then q[Pi(e), B] = q[Pj(e), B] 

and if Pi(e)  Pj(e), then q[Pi(e), B]  q[Pj(e), B]. 
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Therefore, when assessing the risk, the comparison of compensatory functions Pi(e) can be re-

duced to a comparison of functions q[Pi(e), B], which in this case can also be a measure of the possibility 

of the i-th event associated with losses e [6-9]. 

greater the degree of uncertainty in the decision. 

Risk assessment in uncertain conditions 

Now previous considerations allow us to move on to the quantitative assessment of risk. Accord-

ing to the definition introduced earlier, risk is the product of the amount of loss e received as a result of a 

decision, by the extent of the possibility of occurrence of the event associated with this decision, i.e. 

r = e×q(p, B). (6) 

Given that p = Pi(e), and the compensatory function is subject to the above requirements, the 

amount of risk must belong to a certain set of Ri, which can be expressed [10-13] as follows: 

 Ri = rrR
+
  eE r  e×q[Pi(e), B].   (7) 

To perform the inequality included in (7), it is necessary to consider the behavior of the compen-

satory function Pi(e). When the value of losses in the interval eij-1  e  eij (j = 2, ..., n), the function re-

tains a constant value, i.e. Pi(e) = const. When the value of losses reaches the set values, i.e. at e = eij the 

function Pi(e) decreases abruptly. Hence, the maxima of the function r = e×q[Pi(e), B] correspond to ab-

scissae e = ei1, ei2, …, ein. It follows that the maximum risk value is determined by the formula 

 max(r) = maxe×q[Pi(e), B] = maxeij ×q[Pi(e), B],   (8) 

eE eE jNi, 

where Ni = j  eij  E. 

It is obvious that the inequality r  e×q[Pi(e), B] is equivalent to the inequality 

r  maxe×q[Pi(e), B], eE 

Then, given (8), the expression (7) will take the form 

 Ri = rrR
+
  r  hi,   (9) 

where hi = maxeijq[Pi(eij), B]. jNi 

In addition, in order to meet the requirements for the compensatory function, it is necessary that 

[2]: 

f(e, h) = 1 at e  h, (10) 

f(e, h) = exp(-1/B)exp-1/B(e/h)
B
 at e  h 

This implies the correctness of the first condition (1), i.e. if ha  hb, then  

 f(e, hb).   (11) 

When assessing the risk of the i-th decision, it is necessary to choose the minimum value among 

the whole set of risk values r  Ri. Then it follows from (9) and (11) that 

 ri = min r = hi   (12) 

Thus, taking into account (5), (9) from the expression (12) it follows that the value of the risk of 

the i-th decision is determined by the formula 

 ri = maxeij1 – Bln Pi(eij)
-1/B

.   (13) 

rRi 

To determine the parameter B, a finite set P of so-called training objects should be given, the level 

of safety of operation of which is objectively known and can be estimated by a numerical indicator. This 

allows us to form a kind of approximating objectively existing reality (training) matrix of paired relation-

ships between these objects [14]: 

𝑄 = ‖𝑞𝑟𝑘‖𝑝,𝑝 
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The size of the square symmetric matrix Q is determined by the number p of the considered train-

ing objects from the set P, and its elements qrk are the known squares of distances between the r-th and 

the k-th training objects on the axis of preference from the safety point of view [15, 16]. 

To construct the relation S on pairs of training objects, we determine the square of the distance be-

tween the r-th and the k-th training objects on the z-axis by the formula: 

𝑠𝑟𝑘(𝑏) = (𝑧𝑟 − 𝑧𝑘)
2 = [∑𝑏𝑗

𝑚

𝑗=1

(𝑥𝑟𝑗 − 𝑥𝑟𝑗)]

2

. 

Then the observed structure of relationships between training objects on the z-axis  

,
( ) rk p p

S b s
. 

The vector b is fixed. 

We will assess compliance with the functional. 

 
21

1 1

( ) .
p p

rk rk

r k r

B s b q


  

  
 

The value of this functional shows the degree of uncertainty in the evaluation of the decision-

making results.  

The structure of relationships between training objects and the relationships observed on the z-axis 

of the structure are discussed above. 

Conclusion. The assessment model of the degree of uncertainty in technical decision-making is 

constructed. It is based on a comparison of the training sample data with their assessment by the proposed 

indicators in the model. 
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