Preview

Safety of Technogenic and Natural Systems

Advanced search

Energy efficiency analysis of air dehumidification methods that determine safe microclimatic working conditions

https://doi.org/10.23947/2541-9129-2021-3-2-12

Abstract

Introduction. The article deals with the issues related to provision of air humidity parameters required for nonhazardous operation of various technical facilities.
Problem Statement. The paper considers analytical methods for energy efficiency assessment of adsorption and condensation methods of air dehumidification, which provide safe microclimatic working conditions, and the influence of the operating modes of dehumidifying plants on the parameters of the microclimate.
Theoretical Part. As indicators of the energy efficiency of each of the methods, it is proposed to use the energy costs that are minimally necessary for the implementation of ideal physical dehumidification processes and per unit mass of water units emitted from air. This ensures safe and comfortable microclimatic working conditions with minimal energy costs. The ratio of the specific energy costs of the condensation and adsorption methods shows their comparative efficiency. An electronic Id-diagram was used to determine the air parameters in the implemented dehumidification processes (cooling, condensation and adsorption of water vapor).
Conclusion. Analytical dependences are obtained for the analyzed energy efficiency indicators that provide safe and comfortable microclimatic working conditions with minimal energy costs. Numerical estimates were carried out according to the most probable modes of dehumidification processes and air parameters. The parametric restrictions on the implementation of the adsorption dehumidification method are justified, in which it becomes energetically more profitable. The conditions under which it is possible to implement a combined dehumidification method to ensure safe microclimatic working conditions are determined.

About the Authors

V. V. Deryushev
Don State Technical University
Russian Federation

Deryushev, Viktor V., Chief researcher, Professor, Department of Operation of Transport Systems and Logistics, Dr.Sci., Professor

1, Gagarin sq., Rostov-on-Don, 344003) 



E. E. Kosenko
Don State Technical University
Russian Federation

Kosenko, Evgeniy E., Associate professor, Department of Operation of Transport Systems and Logistics, Cand.Sci., Associate professor

1, Gagarin sq., Rostov-on-Don, 344003



V. V. Kosenko
Don State Technical University
Russian Federation

Kosenko, Vera V., Associate professor, Department of Operation of Transport Systems and Logistics, Cand.Sci. 

1, Gagarin sq., Rostov-on-Don, 344003



M. A. Krivchuk
Don State Technical University
Russian Federation

Krivchuk, Mikhail A., Student, Department of Operation of Transport Systems and Logistics

1, Gagarin sq., Rostov-on-Don, 344003 



I. V. Deryushev
Don State Technical University
Russian Federation

Deryushev, Ilya V., Course officer – teacher, Military Academy of the Peter the Great Strategic Missile Forces (Serpukhov Branch)

17, Brigadnaya str., Serpukhov, Moscow region, 142210 



A. S. Timofeev
Don State Technical University
Russian Federation

Timofeev, Aleksey S., Associate professor, Department of Mechanical Engineering Technology, Technological Institute (branch) of DSTU in Azov, Cand.Sci.  

1, Promyshlennaya str., Azov, Rostov region, 346780



References

1. Panfilov, A. V., Deryushev V. V., Korotkiy A. A. Recommended Safety Systems for Risk-Oriented Approach. Occupational Safety in Industry. 2020;5:48–55. (In Russ.)

2. Deryushev, V. V., Zaitseva M. M., Kosenko E. E., Kosenko V. V. The quality analysis of the anti-corrosion coatings metal structures operating in difficult conditions. IOP Conference Series: Materials Science and Engineering. 2020;913(4):042059. http://dx.doi.org/10.1088/1757-899X/913/4/042059

3. Kasyanov, V. E., Deryushev V. V., Kosenko E. E. et al. Synthesis of methods and principles of ensuring the reliability of one-off and serial production machines. MATEC Web of Conferences: International Conference on Modern Trends in Manufacturing Technologies and Equipment (ICMTMTE 2018). 2018;224:02106. https://doi.org/10.1051/matecconf/201822402106

4. Mironchuk, Yu. A. Vliyanie ekspluatatsionnykh vlagopritokov na teplovlazhnostnye protsessy v kamerakh khraneniya morozhenyh produktov. Vestnik of International Academy of Refrigeration. 2014;2:30–33. (In Russ.)

5. Vishnevskiy, E. P., Salin M. Yu. Osushenie vozduha kak metod zashchity zdaniy ot razrusheniya. Santekhnika. Otoplenie. Konditsionirovanie. 2013;5(137):86–93. (In Russ.)

6. Vishnevskiy, E. P., Chepurin G. V. Neobhodimost' osusheniya vozduha i otsenka profitsita vlagi. Santekhnika. Otoplenie. Konditsionirovanie. 2010;4:72–77. (In Russ.)

7. Khmelnyuk, M. G., Vazhinskiy D. I., Zhikhareva N. V. Modern dehumidification technologies. Refrigeration Engineering and Technology. 2014;50(3):15–21. (In Russ.)

8. Guseva, Ya. E., Koroleva N. A. Energoeffektivnost' v sistemah konditsionirovaniya vozduha s primeneniem isparitel'nogo okhlazhdeniya. Santekhnika. Otoplenie. Konditsionirovanie. 2018;8(200):74–77. (In Russ.)

9. Naumov, A. A. Vybor energoeffektivnyh sistem konditsionirovaniya vozduha ofisnyh zdaniy. ABOK. 2005;5:20–24. (In Russ.)

10. Nikolaev, A. V. Energy-efficient air conditioning in shallow mines. Gornyi Zhurnal. 2017;3:71–74. (In Russ.)

11. Merkulov, V. I., Tishchenko, I. V., Abalakin, S. A. Entropiyno-statisticheskiy analiz tsikla sistemy konditsionirovaniya vozduha samoleta. Izvestiya MGTU "MAMI". 2020;3(45);29–35. (In Russ.)

12. Lyalkov, M. V. Energy efficiency analysis of drying compressed air by combined scheme. Teoriya i praktika sovremennoy nauki. 2017;6(24):513–521. (In Russ.)

13. Bogoslovskiy, V. N., Kokorin O. Ya., Petrov L. V. Konditsionirovanie vozduha i kholodosnabzhenie. Moscow: Stroyizdat, 1985. 367 p. (In Russ.)

14. Keltsev, N. V. Osnovy adsorbtsionnoy tehniki. 2-e izd., pererab. i dop. Moscow: Khimiya, 1984. 592 p. (In Russ.)

15. Averkin, A. G. I-d-diagramma vlazhnogo vozduha i ee primenenie pri proektirovanii tekhnicheskih ustroystv Saint-Petersburg: Lan', 2016. 192 p. (In Russ.)


Review

For citations:


Deryushev V.V., Kosenko E.E., Kosenko V.V., Krivchuk M.A., Deryushev I.V., Timofeev A.S. Energy efficiency analysis of air dehumidification methods that determine safe microclimatic working conditions. Safety of Technogenic and Natural Systems. 2021;(3):2-12. https://doi.org/10.23947/2541-9129-2021-3-2-12

Views: 190


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2541-9129 (Online)