Theoretical study of the model of air flow movement near the shaped shelter of the rough grinding machine
https://doi.org/10.23947/2541-9129-2021-1-26-37
Abstract
Introduction. The article deals with the problems of choosing equipment for effective dust removal and subsequent dust collection. The dependences describing the fields of flow velocities in the closed area of the abrasive wheel, influencing the formation of streamlines of flow motion near the shaped shelter of the rough grinding machine, are considered.
Problem Statement. The objective of this research is to develop a mathematical and computer model of the aspiration of a rough grinding machine.
Theoretical Part. To accomplish the set task, the modern software Аnsys was used as well as the previously obtained results of the dispersion analysis of abrasive-cast iron dust during grinding, which had been carried out using a High-class device — an Analysette22 NanoTec laser granulometer.
Conclusion. The results of the analysis, the obtained fields and the values of the air flow velocities in the workplace of the machine operator will be compared with the hovering rates of various dust particles, which will allow us to determine the efficiency of the rough grinding machine shelter, including at the design stage.
About the Author
I. S. KuptsovaRussian Federation
Kuptsova, Irina S., Junior Researcher, Center for Scientific Competencies
1, Gagarin sq., Rostov-on-Don, RF, 344003
References
1. Кугультинов, С. Д. Технология обработки конструкционных материалов / С. Д. Кугультинов, А. К. Ковальчук, И. И. Портнов. — 3-е изд., перераб. и доп. — Москва : Изд-во МГТУ им. Н. Э. Баумана, 2010. — С. 268–270.
2. Пасютина, О. В. Безопасность труда и пожарная безопасность при механической обработке металла на станках и линиях : учеб. пособие / О. В. Пасютина. — Минск : РИПО. — 2012. — 108 с.
3. Залаева, С. Ш. Производственная санитария и гигиена труда : уч. пособие в 3 ч. / С. Ш. Залаева, Е. А. Носатова, О. А. Рыбка. — Ч. 2. Вредные вещества. Производственный шум. — Белгород : Из-во БГТУ, 2008. — С. 93.
4. Быков, Л. В. Основы вычислительного теплообмена и гидродинамики / Л. В. Быков, А. М. Молчанов, Д. С. Янышев. — Москва : URSS, 2019. — C. 124.
5. Снегирёв, А. Ю. Высокопроизводительные вычисления в технической физике. Численное моделирование турбулентных течений : учеб. пособие / А. Ю. Снегирев. — Санкт-Петербург : Изд-во Политехн. ун-та, 2009. — 143 с.
6. Yang, T. S. Two-way interaction between solid particles and homogeneous air turbulence: particle settling rate and turbulence modification measurements / T. S. Yang, S. S. Shy // Journal of Fluid Mechanics. 2005. — Vol. 526, 171–216. DOI: https://doi.org/10.1017/S0022112004002861
7. Weigang Yao, A nonlinear modeling approach using weighted piecewise series and its applications to predict unsteady flows / Yao Weigang, Meng Liou // Journal of Computational Physics. — Vol. 318. — 2016. — P. 58–81. DOI : https://doi.org/10.1016/j.jcp.2016.04.052
8. Matyushenko A. A. Adjustment of the k-ω SST turbulence model for prediction of airfoil characteristics near stall / A. A. Matyushenko, A. V. Garbaruk //Journal of Physics: Conference Series., 18th International Conference Physic A.SPb. — 2016. — Vol. 769. — P. 1–7. DOI : https://doi.org/10.1088/1742-6596/769/1/012082
9. Yoshizawa A. A new methodology for Reynolds-averaged modeling based on the amalgamation of heuristic-modeling and turbulence-theory methods / A. Yoshizawa, S. Nisizima, Y. Shimomura, H. Kobayashi, Y. Matsuo, H. Abe, H. Fujiwara // Journal of Fluids Engineering. —2006. — Vol. 18, Issue 3. DOI : https://doi.org/10.1063/1.2186669
10. Walters, D. K. Three-Equation Eddy-Viscosity Model for Reynolds-Averaged Navier-Stokes Simulations of Transitional Flows / D. K. Walters, D. A Cokljat // Journal of Fluids Engineering. —2008. — Vol. 130, Issue 12. — P. 14. DOI : https://doi.org/10.1115/1.2979230
11. Hamlington, P. E. Local and nonlocal strain rate fields and vorticity alignment in turbulent flows / P. E. Hamlington, J. Schumacher, W. J. A. Dahm // Physics of Fluids. — Vol. 77, Issue 2. — 2008. DOI : https://doi.org/10.1103/PhysRevE.77.026303
12. Menter, F. R. The Scale-Adaptive Simulation Method for Unsteady Turbulent Flow Predictions. Part 1: Theory and Model Description / F. R. Menter, Y. Egorov // Flow Turbulence and Combustion. — 2010. —Vol. 85. —P. 113–138. DOI : https://doi.org/10.1007/s10494-010-9264-5
13. Булыгин, Ю. И. Разработка элементов системы нормализации микроклимата в кабине зерноуборочного комбайна Torum / Ю. И. Булыгин, Е. В. Щекина, В. В. Масленский // Безопасность техногенных и природных систем. — 2019. — № 2. — С. 2–12. DOI : https://doi.org/10.23947/2541-9129-2019-2-2-12
14. Булыгин, Ю. И. Проблемы проектирования пылеочистного оборудования в промышленности / Ю. И. Булыгин, Н. Н. Азимова, И. С. Купцова // Безопасность техногенных и природных систем. — 2018. — № 1–2. — С. 2–12.DOI : https://doi.org/10.23947/2541-9129-2018-1-2-2-12
Review
For citations:
Kuptsova I.S. Theoretical study of the model of air flow movement near the shaped shelter of the rough grinding machine. Safety of Technogenic and Natural Systems. 2021;(1):26-37. https://doi.org/10.23947/2541-9129-2021-1-26-37