Preview

Safety of Technogenic and Natural Systems

Advanced search

Investigation of the stability of polymer composites based on epoxy matrix and astralenes under exposure to high temperatures

https://doi.org/10.23947/2541-9129-2020-4-30-38

Abstract

Introduction. The paper considers one of the ways to improve performance characteristics of products based on polymer composites with epoxy matrix by improving their thermal stability and durability by introducing modifiers.

Problem Statement. The objective of this study is to compare the heat resistance indicators of epoxy matrices of classical design with compositions improved by modification with carbon nanostructures.

Theoretical Part. For basic information, the selection of modifying materials, the selection of the optimal composition of the binder based on epoxy resin, low-molecular hardener, plasticizer and filler was carried out. The technology of introducing modifiers into the structure of the epoxy matrix was developed. Thermogravimetric and differential thermal studies were used to analyze changes in the temperature of the beginning and the end of the thermal effect, the temperature of the maximum thermal effect, the amplitude value and width of the peak effect, the index of its shape, and the mass loss of heated samples depending on their formulation.

Conclusion. The results of the study indicate the possibility of using epoxy resins filled with powdered carbon nanostructures in various areas of production due to the positive effect of additives on thermal stability indicators.

About the Authors

V. A. Borisova
Saint-Petersburg University of State Fire Service of EMERCOM of Russia
Russian Federation

Valeriya A. Borisova - Associate professor, Faculty of Training Highly Qualified Personnel, Saint-Petersburg University of State Fire Service of EMERCOM of Russia.

149, Moskovsky Ave., Saint Petersburg, 196105.



A. A. Egorov
Saint-Petersburg University of State Fire Service of EMERCOM of Russia
Russian Federation

Andrey A. Egorov - Competitor, Faculty of Training Highly Qualified Personnel, Saint-Petersburg University of State Fire Service of EMERCOM of Russia.

149, Moskovsky Ave., Saint Petersburg, 196105.



References

1. Simonov-Emelyanov I. D., Apeksimov N. V., Trofimov A. N. et al. Fiziko-mekhanicheskaya monolitnost' struktury i svoystva vysokoprochnykh polimernykh kompozitsionnykh materialov [Physical and mechanical solidity of structure and properties of high strength polymeric composite materials]. Composite materials constructions. 2019;2(154):30-36. (In Russ.).

2. Voroshirin A. S. Polimernye materialy na osnove epoksidnykh smol [Polymer materials based on epoxy resins]. Sovremennye tekhnologii v obrazovanii i promyshlennosti: ot teorii k praktike: sb. mater. II Vnutrivuz. nauch.-prakt. konf. [Modern technologies in education and industry: from theory to practice: proc. of the II intra-University scientific-practical conf.]. Sterlitamak: Publishing house of Ufa State Petroleum Technological University, 2018, p. 118-119. (In Russ.).

3. Ushkov V. A., Grigoreva L. S., Abramov V. V. Goryuchest' epoksidnykh polimerov [Burning of epoxy polymer solution]. Vestnik MGSU. 2011;1:352-356. (In Russ.).

4. GOST R 56211-2014 Smoly epoksidno-dianovye neotverzhdennye. Tekhnicheskie usloviya [GOST R 56211-2014 Non-cured epoxy-diane resins. Technical conditions]. Federal Agency on Technical Regulating and Metrology. Moscow: Standartinform, 2015. Available from: http://docs.cntd.ru/document/1200115430 (Accessed 20 October 2020) (In Russ.).

5. TU 6-02-1099-83 Polietilenpoliaminy distillirovannye [Technical specifications 6-02-1099-83 Distilled polyethylene polyamines]. Russian Energy Agency. Moscow: Standartinform, 1984, 63 p. Available from: http://nd.gostinfo.ru/document/3308397.aspx (Accessed 20 October 2020) (In Russ.).

6. Grishanov A. A. Svoystva kompozitov na osnove epoksidnoy alifaticheskoy smoly DEG-1 [Properties of composites based on DEG-1 epoxy aliphatic resin]. Klei. Germetiki. Tekhnologii. 2013;6:11-14 (In Russ.).

7. Ponomarev A. N., Nikitin V. A. Poliedral'nye mnogosloynye uglerodnye nanochastitsy fulleroidnogo tipa [Polyhedral multi-layered carbon nanoparticles of the fulleroid type]. Patent 2196731, Russian Federation. No. 2000124887/12, 2020. Available from: https://yandex.ru/patents/doc/RU2196731C220030120 (Accessed 20 October 2020) (In Russ.).

8. Ivakhnyuk G. K., Borisova V. A. Tendentsii razvitiya proizvodstva nanomodifitsirovannykh polimernykh kompozitov v sistemakh protivopozharnoy zashchity transportnykh ob'ektov [Development trends in the production of nanomodified polymer composites in fire protection systems for transport facilities]. Aktual'nye problemy i tendentsii razvitiya tekhnosfernoy bezopasnosti v neftegazovoi otrasli: mater. II mezhdunar. nauch.-prakt. konf. [Current problems and trends in the development of technosphere safety in the oil and gas industry: proc. of the II international scientific and practical conf.]. Ufa: Publishing house of Ufa State Petroleum Technological University, 2019, p. 35-38. (In Russ.).

9. Ilchenko S. I., Gunyaev G. M., Aleksashin V. M. et al. Uglerodnye nanochastitsy strukturnye modifikatory i uprochniteli polimerov i polimernykh kompozitov [Carbon nanoparticles structural modifiers and hardeners of polymers and polymer composites]. Aviation Materials and Technologies. 2004;2:36-54 (In Russ.).

10. Brusentseva T., Zobov K., Filippov A. Vvedenie nanoporoshkov i mekhanicheskie svoystva materialov na osnove epoksidnykh [Introduction of nanopowders and mechanical properties of materials on epoxy resins]. Nanoindustry. 2013;3(41):21-31 (In Russ.).

11. GOST R 53293-2009. Pozharnaya opasnost' veshchestv i materialov. Materialy, veshchestva i sredstva ognezashchity. Identifikatsiya metodami termicheskogo analiza [GOST R 53293-2009. Fire hazard of substances and materials. Materials, substances and means of fire protection. Identification by thermal analysis methods]. Federal Agency on Technical Regulating and Metrology. Moscow: Standartinform, 2019. Available from: http://docs.cntd.ru/document/1200071912 (Accessed 20 October 2020) (In Russ.).

12. Shatalova T. B., Shlyakhtin O. A., Veryaeva E. M. Metody termicheskogo analiza: Metodicheskaya razrabotka. Moscow: Lomonosov Moscow State University Publishing house, 2011, 72 p. Available from: https://docplayer.ru/29389082-Metody-termicheskogo-analiza.html (Accessed 20 October 2020) (In Russ.).

13. Baratov A. N., Korolchenko A. Ya., Kravchuk G. N. et al. Pozharovzryvoopasnost' veshchestv i materialov i sredstva ikh tusheniya: Sprav. izd. v 2 kn. [Fire and explosion hazard of substances and materials and means of their extinguishing: Reference ed. in 2 books]. Moscow: Khimiya, 1990, 496 p. (In Russ.).

14. Mostovoy A. S. Razrabotka sostavov, tekhnologii i opredlenie svoystv mikro- i nanonapolnennykh epoksidnykh kompozitov funktsional'nogo naznacheniya: dis. ... kand. tekhn. nauk [Development of compositions, technologies and determination of properties of micro- and nanofilled functional epoxy composites: author's thesis]. Saratov, 2014, 8 p. (In Russ.).

15. Goryunov V. A., Chernikov A. I., Chuykov A. M. Differentsial'no-termicheskiy i termogravimetricheskiy analiz termodestruktsii polimernykh materialov [Differential thermal and thermogravimetric analysis of thermal degradation of polymer materials]. Problemy obespecheniya bezopasnosti pri likvidatsii posledstviy chrezvychaynykh situatsiy. 2015;1:154-157 (In Russ.).


Review

For citations:


Borisova V.A., Egorov A.A. Investigation of the stability of polymer composites based on epoxy matrix and astralenes under exposure to high temperatures. Safety of Technogenic and Natural Systems. 2020;(4):30-38. https://doi.org/10.23947/2541-9129-2020-4-30-38

Views: 188


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2541-9129 (Online)